‘ MODELING AND SIMULATION BASED DESIGN

Domain-specific languages with JetBrains MPS - Kevin Buyl




JETBRAINS MPS

MPS = Meta Programming System

Implements the Language Oriented Programming (LOP)
paradigm

Created Traffic and TrafficLight languages

Comparison with AToM?

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



WHAT IS MAINSTREAM PROGRAMMING ?

= using a general-purpose language (Java or C++) to
build the application

Steps:
Think: conceptual model in your head
Choose: choose a general-purpose language

Program: write the solution by performing a difficult

mapping from the conceptual model to the programming
language

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



WHAT IS MAINSTREAM PROGRAMMING ?

Advantages: ©

Implement every solution to a problem
Disadvantages: ®

Some solutions will take ages due to the nature of a general-
purpose language (= unproductive)

Forces the programmer to think like a computer rather than
have the computer think more like the programmer

Long gap between the idea of a solution and the solution
itself (due to object-oriented design)

High-level idea is converted to low-level features of the

language =2 the big picture is lost = reconstructing requires
effort and time

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

= using a domain-specific language (DSL) for the
problem
Steps:

Think: conceptual model in your head

Choose: choose some specialized DSLs to write the solution

Create: no appropriate DSLs for your problem = create
one yourself

Program: write the solution by performing a
straightforward mapping from the conceptual model to DSL

Compilation/generation of code (automated)

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

In other words:
Develop high-level, domain-oriented language

The development process then splits into two independent
stages
o Implement the system using this 'middle level' language

o Implement a compiler, translator or interpreter for the language,
using existing technology

Reference: M. P. Ward, Language Oriented Programming (October 1994)



WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

Advantages: ©

Separation of concerns between design issues (domain-
specific language) and implementation issues

High development productivity: problem-specific very high
level language = a few lines of code are sufficient

Improves the maintainability of the design

Porting to a new operating system or programming language
becomes simplified

Opportunity for reuse (reuse of the middle level languages)

Reference: M. P. Ward, Language Oriented Programming (October 1994)



WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

Disadvantages: @
The strength of DSLs, domain specificity, is also their
weakness

What we want is different languages for every specific part of
the program that can work together = need to create, reuse,
modify and extend/mix languages = can be done in
JetBrains MPS

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



WHAT IS A LANGUAGE IN LOP ?

3 main components:

Structure = abstract syntax (what concepts are defined and
how are they arranged)

Editor = concrete syntax (how it should be presented)

Semantics (how should it be interpreted and how should it
be transformed into executable code)

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



JETBRAINS MPS

MPS doesn’t use plain text form

Normal programs: compile a program —> text parsed into a
abstract syntax tree (AST)

Major drawback: loss of extensibility

The language (language grammar) cannot be extended by
programmers

New features can make the language ambiguous

In MPS: the program and all language concepts are directly
stored in a structured graph (everything is a node, even
language constructs itself)

Due to this feature it is possible to extend/mix languages

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



JETBRAINS MPS

Project = organizational unit

Projects consist of 1 or more modules, which themselves
consist of models

Several types of modules: solutions, languages, generators, ...

A language consists of several models, each defining a certain
aspect of the language: structure, editor, actions, constraints,

A language can extend another language

Models consist of root nodes (represent top level
declarations) and non-root nodes

The basic notions of MPS:
Nodes, concepts and languages

A concept defines the "type” of node
Specifies children, properties and references
Concept declarations form an inheritance hierarchy

Reference: http://confluence.jetbrains.net/display/MPSD1/MPS+User%27s+Guide



JETBRAINS MPS

Features of the language (concepts) defined in structure
aspect = abstract syntax

The editor aspect defines the layout of cells for each
concept in the language = concrete syntax

The generator of a language defines a transformation to
other languages (e.g. Java) =2 semantics

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)



JETBRAINS MPS

Example:
Traffic and TrafficLight languages

Concept(s) of TrafficLight language used in Traffic language
- extending/mixing languages

Generator of Traffic language transforms traffic network to
an executable Java class = operational semantics

Demo ...



COMPARISON WITH AToM?3

Representation

Abstract syntax

Concrete syntax

Code generation

Simulation

Constraints

Multiple formalisms

Extending languages
Weaving languages

Change in meta-model 2>
change in model

User-friendliness (+/++/+++)

Visual

Classes in Class Diagram model
Associations

Icons/images for class
instances

Button in formalism

Button in formalism
Rewrite rules

Multiplicities
Constraints in code

Yes

No

No

Textual/Visual

Concepts in structure aspect
(children, references)

Editor aspect (cell lay-
out)

Generator language

Only after generation
(in Java)

Multiplicities
Constraint aspect

Yes

Yes

Names (after refactoring)

+++



CONCLUSION & FUTURE WORK

Implementing, extending and mixing languages in
JetBrains MPS is quite easy

Some languages (e.g. Traffic) are better designed in a
graphical tool like AToM? for better simulation

Future (possible extra features) :
Queuing for road segments
More realistic execution (rather than a stepwise execution)

Generator to transform the traffic network in the high-level
language to a Java Swing application—> the same or better
results then the AToM? implementation



