
MODELING AND SIMULATION BASED DESIGN

Domain-specific languages with JetBrains MPS - Kevin Buyl1

JETBRAINS MPS

 MPS = Meta Programming System

 Implements the Language Oriented Programming (LOP)
paradigm

 Created Traffic and TrafficLight languages

 Comparison with AToM³

2

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

WHAT IS MAINSTREAM PROGRAMMING ?

 = using a general-purpose language (Java or C++) to
build the application

 Steps:

1. Think: conceptual model in your head

2. Choose: choose a general-purpose language

3. Program: write the solution by performing a difficult
mapping from the conceptual model to the programming
language bottleneck step

3

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

WHAT IS MAINSTREAM PROGRAMMING ?

 Advantages:

 Implement every solution to a problem

 Disadvantages:

 Some solutions will take ages due to the nature of a general-
purpose language (= unproductive)

 Forces the programmer to think like a computer rather than
have the computer think more like the programmer

 Long gap between the idea of a solution and the solution
itself (due to object-oriented design)

 High-level idea is converted to low-level features of the
language the big picture is lost reconstructing requires
effort and time

4

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

 = using a domain-specific language (DSL) for the
problem

 Steps:

1. Think: conceptual model in your head

2. Choose: choose some specialized DSLs to write the solution

3. Create: no appropriate DSLs for your problem create
one yourself

4. Program: write the solution by performing a
straightforward mapping from the conceptual model to DSL

5. Compilation/generation of code (automated)

5

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

 In other words:

 Develop high-level, domain-oriented language

 The development process then splits into two independent
stages

 Implement the system using this 'middle level' language

 Implement a compiler, translator or interpreter for the language,
using existing technology

6

Reference: M. P. Ward, Language Oriented Programming (October 1994)

WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

 Advantages:

 Separation of concerns between design issues (domain-
specific language) and implementation issues

 High development productivity: problem-specific very high
level language a few lines of code are sufficient

 Improves the maintainability of the design

 Porting to a new operating system or programming language
becomes simplified

 Opportunity for reuse (reuse of the middle level languages)

7

Reference: M. P. Ward, Language Oriented Programming (October 1994)

WHAT IS LANGUAGE ORIENTED PROGRAMMING ?

 Disadvantages:

 The strength of DSLs, domain specificity, is also their
weakness

 What we want is different languages for every specific part of
the program that can work together need to create, reuse,
modify and extend/mix languages can be done in
JetBrains MPS

8

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

WHAT IS A LANGUAGE IN LOP ?

 3 main components:

 Structure = abstract syntax (what concepts are defined and
how are they arranged)

 Editor = concrete syntax (how it should be presented)

 Semantics (how should it be interpreted and how should it
be transformed into executable code)

9

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

JETBRAINS MPS

 MPS doesn’t use plain text form

 Normal programs: compile a program text parsed into a
abstract syntax tree (AST)

 Major drawback: loss of extensibility

 The language (language grammar) cannot be extended by
programmers

 New features can make the language ambiguous

 In MPS: the program and all language concepts are directly
stored in a structured graph (everything is a node, even
language constructs itself)

 Due to this feature it is possible to extend/mix languages

10

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

JETBRAINS MPS

 Project = organizational unit
 Projects consist of 1 or more modules, which themselves

consist of models
 Several types of modules: solutions, languages, generators, …
 A language consists of several models, each defining a certain

aspect of the language: structure, editor, actions, constraints,
…

 A language can extend another language
 Models consist of root nodes (represent top level

declarations) and non-root nodes
 The basic notions of MPS:

 Nodes, concepts and languages

 A concept defines the "type“ of node
 Specifies children, properties and references
 Concept declarations form an inheritance hierarchy

11

Reference: http://confluence.jetbrains.net/display/MPSD1/MPS+User%27s+Guide

JETBRAINS MPS

 Features of the language (concepts) defined in structure
aspect abstract syntax

 The editor aspect defines the layout of cells for each
concept in the language concrete syntax

 The generator of a language defines a transformation to
other languages (e.g. Java) semantics

12

Reference: Sergey Dmitriev, Language Oriented Programming: The Next Programming Paradigm (November 2004)

JETBRAINS MPS

 Example:

 Traffic and TrafficLight languages

 Concept(s) of TrafficLight language used in Traffic language
 extending/mixing languages

 Generator of Traffic language transforms traffic network to
an executable Java class operational semantics

 Demo …

13

COMPARISON WITH ATOM³

14

AToM³ JetBrains MPS

Representation Visual Textual/Visual

Abstract syntax Classes in Class Diagram model
Associations

Concepts in structure aspect
(children, references)

Concrete syntax Icons/images for class
instances

Editor aspect (cell lay-
out)

Code generation Button in formalism Generator language

Simulation Button in formalism
Rewrite rules

Only after generation
(in Java)

Constraints Multiplicities
Constraints in code

Multiplicities
Constraint aspect

Multiple formalisms Yes Yes

Extending languages
Weaving languages

No Yes

Change in meta-model
change in model

No Names (after refactoring)

User-friendliness (+/++/+++) + +++

CONCLUSION & FUTURE WORK

 Implementing, extending and mixing languages in
JetBrains MPS is quite easy

 Some languages (e.g. Traffic) are better designed in a
graphical tool like AToM³ for better simulation

 Future (possible extra features) :

 Queuing for road segments

 More realistic execution (rather than a stepwise execution)

 Generator to transform the traffic network in the high-level
language to a Java Swing application the same or better
results then the AToM³ implementation

15

